Why Machines Learn

Why Machines Learn


Unabridged

Sale price $14.63 Regular price$22.50
Save 35.0%
Quantity:
window.theme = window.theme || {}; window.theme.preorder_products_on_page = window.theme.preorder_products_on_page || [];

If you were looking for a way to make sense of the AI revolution that is well underway, look no further. With this comprehensive yet engaging book, Anil Ananthaswamy puts it all into context, from the origin of the idea and its governing equations to its potential to transform medicine, quantum physics—and virtually every aspect of our life. An essential read for understanding both the possibilities and limitations of artificial intelligence.
Sabine Hossenfelder, physicist and New York Times bestselling author of Existential Physics: A Scientist's Guide to Life's Biggest Questions

A rich, narrative explanation of the mathematics that has brought us machine learning and the ongoing explosion of artificial intelligence

Machine learning systems are making life-altering decisions for us: approving mortgage loans, determining whether a tumour is cancerous, or deciding whether someone gets bail. They now influence developments and discoveries in chemistry, biology, and physics—the study of genomes, extra-solar planets, even the intricacies of quantum systems. And all this before large language models such as ChatGPT came on the scene.

We are living through a revolution in machine learning-powered AI that shows no signs of slowing down. This technology is based on relatively simple mathematical ideas, some of which go back centuries, including linear algebra and calculus, the stuff of seventeenth- and eighteenth-century mathematics. It took the birth and advancement of computer science and the kindling of 1990s computer chips designed for video games to ignite the explosion of AI that we see today. In this enlightening book, Anil Ananthaswamy explains the fundamental math behind machine learning, while suggesting intriguing links between artifical and natural intelligence. Might the same math underpin them both?

As Ananthaswamy resonantly concludes, to make safe and effective use of artificial intelligence, we need to understand its profound capabilities and limitations, the clues to which lie in the math that makes machine learning possible.

*This audiobook contains a PDF of equations, graphs, and illustrations.